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Optogenetics is the use of genetically coded, light-gated ion channels or pumps (opsins) for millisecond resolution control of neural
activity. By targeting opsin expression to specific cell types and neuronal pathways, optogenetics can expand our understanding of the
neural basis of normal and pathological behavior. To maximize the potential of optogenetics to study human cognition and behavior,
optogenetics should be applied to the study of nonhuman primates (NHPs). The homology between NHPs and humans makes these
animals the best experimental model for understanding human brain function and dysfunction. Moreover, for genetic tools to have
translational promise, their use must be demonstrated effectively in large, wild-type animals such as Rhesus macaques. Here, we review
recent advances in primate optogenetics. We highlight the technical hurdles that have been cleared, challenges that remain, and summa-
rize how optogenetic experiments are expanding our understanding of primate brain function.
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Introduction
Cognitive, motor, and sensory functions of the brain depend on
coordinated interactions between connected neurons and net-
works. Abnormal activity patterns in functional brain networks
are thought to underlie dysfunction in many brain diseases rang-
ing from Parkinson’s disease to schizophrenia. Optogenetics, the
use of genetically coded, light-driven ion channels and pumps
(opsins) to excite or inhibit neurons, enables fast and focused in
vivo manipulation of neural activity. Optogenetic techniques
have rapidly become the standard tool used to understand how
cell types, circuits, and systems operate in normal and patholog-

ical states (Deisseroth, 2015). Recent breakthroughs using opto-
genetics have confirmed that phasic dopamine responses are
teaching signals (Steinberg et al., 2013; Sharpe et al., 2017), shown
that amygdala ensembles code for rewarding and aversive stimuli
(Gore et al., 2015), and demonstrated that different cortical in-
terneurons have distinct behavioral roles (Kvitsiani et al., 2013).
Therefore, optogenetics is a valuable tool kit for investigating the
link between brain and behavior. However, optogenetic experi-
ments have been largely restricted to small animal models and the
numerous differences between rodent and primate brains limit
the generality of insights gained from these experiments. The
anatomical, physiological, genetic, and behavioral characteristics
of nonhuman primates (NHPs) are closer to the human than any
other experimentally accessible species. These homologies make
NHPs the best animal model for human brain functions and
disorders (Phillips et al., 2014; Roelfsema and Treue, 2014). Ap-
plying optogenetics to study cell type-, circuit-, and system-level
questions in NHPs promises to reveal fundamental mechanistic
insights for human brain function and dysfunction.

The first NHP optogenetic studies used optical stimulation to
activate neurons in primary motor cortex (M1) or frontal eye
field (FEF) (Han et al., 2009; Diester et al., 2011). Subsequent
studies provided evidence that optogenetics can be used to ma-
nipulate NHP behavior (Cavanaugh et al., 2012; Gerits et al.,
2012; Jazayeri et al., 2012; Ohayon et al., 2013). Therefore, opto-
genetics was shown to modulate neuronal activity and behavior
in NHPs. Since then, studies have started to provide new insights
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about function and dysfunction of specific brain circuits (Afraz et
al., 2015; Inoue et al., 2015; Lu et al., 2015; Nassi et al., 2015b;
Acker et al., 2016; Galvan et al., 2016; Klein et al., 2016; Stauffer et
al., 2016; El-Shamayleh et al., 2017; Tamura et al., 2017). Despite
these significant advances, the pace of NHP optogenetic studies is
slowed by the current demand for tool development, modifica-
tion, and improvement.

Optogenetic techniques have been modified and adapted to be
used in NHP studies (Tamura et al., 2012; Ohayon et al., 2013;
Ozden et al., 2013; Ruiz et al., 2013; Dai et al., 2015; Yazdan-
Shahmorad et al., 2016), yet several hurdles remain to make NHP
optogenetics more effective and off-the-shelf, including the
following:

1. Targeting specific cell populations
Genetic engineering is commonly used to achieve cell type- and
pathway-specific optogenetics in transgenic mice (Gong et al.,
2007). Transgenic NHPs are not widely available (Izpisua Bel-
monte et al., 2015), so viral vector delivery is the method of choice
to deliver opsins to NHPs. However, current technology has a
limited ability to direct cell type specificity.

2. Brain size
The anatomical and genetic differences between rodents and
NHPs mean that the strategies used in rodent optogenetics are
not always effective in NHPs. For example, given the larger size of
macaque brains, the volume of tissue that should be engaged in
optogenetic modulation is far greater.

3. Minimizing tissue damage
Research in NHPs benefits from using the same animal for mul-
tiple experiments, for example, in the context of assessing neuro-
nal plasticity and the effects of learning. Therefore, reducing
brain tissue damage inflicted by probe penetrations, viral injec-
tions, and light-induced heating is a priority.

4. In vivo assessment of the time course and expression level of
the opsins
Currently, postmortem inspection is typically used to verify op-
sin expression, but in vivo assessment of expression levels would
enhance the effectiveness of optogenetic manipulations in
longer-lasting NHP experiments.

Addressing these challenges will advance primate neurosci-
ence and hasten translation to medicine. Optogenetic techniques
have the potential to be used in prosthetic devices or as an alter-
native to deep-brain stimulation (Busskamp et al., 2012; Chow
and Boyden, 2013; Williams and Denison, 2013; Wykes et al.,
2016). To maximize this translational potential, optogenetics
should be broadly applicable in large, wild-type animals such as
NHPs.

Here, we review recent breakthroughs in NHP optogenetics
from our research groups (Fig. 1) and use these reports and oth-
ers to demonstrate how some obstacles have been surpassed to
give way to new scientific insights. Accordingly, this review is
intended to provide a broad overview of the current state of the
art. Readers are referred to more specialized publications about
viral vector strategy (Gerits et al., 2015; El-Shamayleh et al., 2016;
Mendoza et al., 2017), behavioral modulation (Kinoshita and Isa,
2015), and the use of NHPs (Galvan et al., 2017). The techniques
currently used to gain genetic access to specific cell types, to de-
liver sufficient viral vector loads and light intensities, and to min-
imize tissue damage will lead the way toward safe, effective, and
widespread use of optogenetics in NHP-based neuroscience re-

search. In addition, these techniques can serve as a foundation for
future circuit-based therapy options.

Targeting Specific Neuronal Populations
A significant roadblock to effective NHP optogenetics is the lack
of universal tools such as genetically modified Cre-driver lines
(Gong et al., 2007) for selective targeting of neuronal populations
in NHPs. Efforts to circumvent this roadblock and achieve selec-
tive neuronal manipulations in monkeys can be broadly classified
into two approaches: (1) those that use cell type specific gene
promoters (Fig. 2A) and (2) those that use projection targeting.
(Fig. 2B–D). Both approaches are based on the use of viral vectors
to deliver opsin genes to neurons. In particular, adeno-associated
virus (AAV) and lentivirus (LV) are commonly used because they
are relatively safe and because they can infect nondividing cells
such as neurons (Lentz et al., 2012; Kotterman et al., 2015).

The principal drawbacks to AAV and LV are their limited
genetic capacities, �5 and �9 kb, respectively (Lentz et al., 2012).
These limits require concise genetic sequences to control opsin
expression. One approach is to isolate or synthesize small pro-
moters. Several general purpose promoters are commonly used,
including CMV and Ef1�, but viruses containing these promot-
ers transduce a variety of cell types including neurons and glia
(Yizhar et al., 2011).

Targeting neuronal populations using cell type specific
promoters
Early breakthroughs have achieved cell type selectivity using viral
vectors that carry small promoter sequences. The CaMKII� pro-
moter has been often used in NHP experiments to target excit-
atory neurons (Han et al., 2009; Dai et al., 2014; Lu et al., 2015;
Nassi et al., 2015a). Targeting NHP inhibitory interneurons is now
within reach due to the development of mDlx enhancer elements
(Dimidschstein et al., 2016). The tyrosine hydroxylase (TH) pro-
moter has been used to label NHP dopamine neurons with GFP
(Lerchner et al., 2014). Likewise, a promoter was developed to target
D2-expressing medium spiny neurons in wild-type rodents (Zalo-
cusky et al., 2016). These studies and others provide evidence that
promoters can be used to direct cell type specific gene expression.

Three recent NHP studies have used cell type specific promot-
ers to enable optogenetic investigation of well defined neuronal
types and their role in brain function and behavior. These suc-

Figure 1. Recent advances in NHP optogenetics. Shown is a schematic outline of the ma-
caque brain indicating the regions and pathways that are the focus of recent studies that use
optogenetics. Colored ovals represent different brain nuclei and arrows represent connections
between areas. M1, Primary motor cortex; FEF, Frontal eye field; LGN, lateral geniculate nucleus;
SC, superior colliculus; MThal, Motor thalamus; SNc/VTA, substantia nigra pars compacta/ven-
tral tegmental area; OMV, oculomotor vermis.
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cesses augur well for promoter-based tar-
geting of specific cell types in the primate
CNS.

CaMKII� promoter for targeting
koniocellular LGN cells
The CaMKII� promoter was used in ma-
caque monkeys to target the well established
projection from the lateral geniculate nu-
cleus (LGN) to primary visual cortex (V1)
(Klein et al., 2016). The laminar organiza-
tion of primate LGN gives rise to three cell
type-specific projection streams to V1, orig-
inating in konio-, magno-, and parvo-
cellular neurons. Konio cells express the �
subunit of the protein CaMKII (Hendry and
Yoshioka, 1994), whereas the magno- and
parvo-cellular neurons express parvalbu-
min (Yan et al., 1996). LGN konio neurons
were successfully targeted using an AAV5-
CaMKII�-ChR2-eYFP vector injected into
the LGN of macaque monkeys. A significant
number of cells were eYFP positive and the
majority of these cells were CaMKII�-
expressing neurons. However, there was
also evidence for sparse labeling of other
neuron types and of cells located outside of
LGN, for example, in the retina or in V1, as a
result of retrograde transport of vector par-
ticles to the distant cell bodies of neurons
projecting to the injection site in LGN.
Moreover, visual stimulation revealed that
many of the optogenetically identified ko-
nio cells were not visually responsive. This
result, in accordance with previous findings
(Norton and Casagrande, 1982), suggested
thatotherextraretinal signalscouldcontribute
to konio cell responses. Optogenetic stimu-
lation of konio cell bodies in LGN evoked
neuronal activity in V1. The resulting V1
laminar activation pattern was consistent
with previous anatomical studies demon-
strating the koniocellular projection to
V1’s supragranular layers (Norton and
Casagrande, 1982; Hendry and Yoshioka, 1994; Chatterjee and
Callaway, 2003).

TH promoter for targeting dopaminergic neurons
The TH promoter is active in dopamine neurons, where the gene
product TH is a key enzyme catalyzing the synthesis of dopamine.
To target dopamine neurons in Rhesus monkeys, a viral vector
delivered the gene for the enzyme Cre recombinase under the
control of a 300 bp TH promoter fragment. A second viral vec-
tor containing a double-floxed insert consisting of the gene for
ChR2 driven by the ubiquitous Ef1� promoter was injected with
the TH-Cre virus (Stauffer et al., 2016). This strategy separated
the demands of cell type specificity (determined by the small TH
promoter) from the demand for high levels of ChR2 expression
(determined by the Ef1� promoter) and resulted in ChR2 expres-
sion in �40% of dopamine neurons. More importantly, the strat-
egy produced highly specific expression; �95% of ChR2-
expressing neurons were dopaminergic (Fig. 3A).

Optical stimulation was paired with liquid rewards to modu-
late reward value. Dopamine neurons responded more strongly

to cues that predicted dopamine neuron-specific optogenetic
stimulation at the time of the reward compared with cues that
predicted reward alone (Fig. 4A). Larger dopamine responses
reflect greater value, suggesting that the animal should choose the
option that predicted stimulation (Lak et al., 2014; Stauffer et al.,
2014). Indeed, animals readily learned which cue was associated
with optogenetic reward stimulation and chose it with greater
frequency (Fig. 4B). Therefore, dopamine neuron-specific opto-
genetic stimulation resulted in neuronal and behavioral corre-
lates of value learning.

L7 promoter for targeting cerebellar Purkinje cells
The L7 gene and its promoter provide a compelling example of
differential gene regulation across neuronal types and how this
genetic foundation can be leveraged for cell type specific targeting
in primates. Within the cerebellum, the L7 gene is active only in
Purkinje cells and is silent in other cell types (Nordquist et al.,
1988; Oberdick et al., 1988). The induction of L7 protein expres-
sion is coincident with the morphological structuring of Purkinje
cell dendrites and synaptogenesis (Oberdick et al., 1988; Zhang et

Figure 2. Methods to achieve selective optogenetic control of specific neuronal populations. A, Cell type specific-promoters.
Left, Example AAV plasmid (but LVs were used as well). Dark blue, cyan, and green regions represent the normal positions of the
promoter, opsin gene, and reporter gene, respectively. Gray regions of the plasmid represent standard AAV plasmid components
and posttranslational enhancers. For more information, the reader is referred to https://www.addgene.org/viral-vectors/aav/
aav-guide/. Right, AAVs injected into the brain region of interest infect cells nearby and the recombinant DNA normally remains
episomal as circular DNA. Transcription of the recombinant DNA and subsequent opsin expression proceeds only in cells where the
promoter is actively used (e.g., the L7 promoter in cerebellar Purkinje cells), allowing for a cell type specific optogenetic manipu-
lation. B, Anterograde projection targeting. The viral vector, normally carrying a ubiquitous promoter (e.g., CMV), is injected into
a particular brain region. As the opsin is expressed, it will be trafficked to the cell axons. The viral vector will infect cells in the
injected region, but light is only delivered at a distant projection zone of some cell bodies at the injection site. Therefore, only the
cells that project from the injected site to the illuminated region are activated. C, Retrograde projection targeting. Specialized viral
vectors that are trafficked in the retrograde direction (e.g., rAAV2-retro, Fug-B) are injected in a brain region. The vector particles
that enter axon terminals are transported back to the cell bodies, where transcription of the recombinant DNA occurs. Light is
delivered to the cell bodies that project to the injected site. Therefore, only the cells that project from the illuminated region to the
injected regions are activated. D, Transsynaptic projection targeting. Specialized proteins (e.g., WGA-Cre) and viruses (e.g., rabies,
HSV) cross the synaptic cleft. Synaptic crossing occurs in the anterograde (top) or retrograde (bottom) direction, depending on the
protein/virus used. Red arrows in B–D indicate the direction of transport.
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al., 2002). The L7 promoter is the basis for several lines of Pur-
kinje cell-specific transgenic mice (Oberdick et al., 1988;
Sługocka et al., 2017), but the earliest promoter sequence used to
generate these animals was 8 kb long and thus too large to be used
in AAV or LV vectors. Fortunately, subsequent systematic trun-
cations of the full promoter sequence revealed that the minimal
gene regulatory sequence required for Purkinje cell targeting
(�1 kb) is small enough to fit in these viral vectors (Oberdick et
al., 1993).

One study used a murine L7 promoter sequence in AAV vec-
tors (AAV1 and AAV9) to express ChR2 and achieve selective
optogenetic control of Purkinje cells in Rhesus macaques (El-
Shamayleh et al., 2017). Immunohistochemical analyses revealed
strong, Purkinje cell-specific ChR2 expression (91–96% selective;
Fig. 3B). To assess whether ChR2 expression driven by the L7
promoter could perturb primate Purkinje cell function in vivo,
the effects of optical stimulation in cerebellar cortex were assessed
electrophysiologically and behaviorally. Extracellular recordings
at cerebellar cortical sites transduced with AAV-L7-ChR2 vectors
demonstrated robust optogenetic activation, with spiking re-
sponses that entrained to sinusoidal laser modulation frequencies
of up to 20 Hz. Optical stimulation of the oculomotor vermis, a
cerebellar cortical region involved in the execution of accurate
saccades, caused consistent saccade dysmetria with a latency of
�15 ms. These results demonstrate the utility of AAV-L7-ChR2
vectors for investigating Purkinje cell-specific contributions to
circuit function and behavior in primates.

These new studies collectively highlight the possibility of using
cell type specific promoters to achieve opsin expression in tar-

geted NHP neuronal populations and to manipulate NHP behav-
ior with these selective perturbations of neuronal activity. The
discovery and development of new and enhanced promoters will
enable optogenetic manipulation in anatomically and behavior-
ally relevant neuronal populations of monkeys to approach the
effectiveness of optogenetic manipulation in small, transgenic
animals.

Targeting neuronal populations based on their projections
One critical advantage of optogenetics is the ability to perturb
selectively the activity of neural pathways that connect two brain
regions. Moreover, where cell type specific promoters are not avail-
able, projection targeting approaches can be used to gain cell type
specificity. Pathway-selective optogenetic stimulation can be ac-
complished via anterograde, retrograde, or transsynaptic trans-
port mechanisms (Fig. 2B–D) (Gradinaru et al., 2010; Stuber et
al., 2011; Tye et al., 2011; Warden et al., 2012; El-Shamayleh et al.,
2016). Anterograde projection targeting, in which opsins ex-
pressed at axonal terminals are activated locally, has been used to
elucidate neural network functions in the primate brain (Inoue et
al., 2015; Galvan et al., 2016).

Anterograde projection targeting
To manipulate selectively the projection from the FEF to the
superior colliculus (SC), an AAV-CMV-ChR2 vector was in-
jected into the FEF and a fiber optic was inserted into the SC to
illuminate ChR2-expressing axon terminals of FEF neurons
(Inoue et al., 2015). Many SC neurons were excited by optical
stimulation of FEF axon terminals. Optical stimulation of axon

Figure 3. Cell type specific promoters direct expression of opsins in dopaminergic neurons and Purkinje cells in macaques. A, Expression of ChR2-EYFP (left) and TH (indicating dopaminergic
neurons; middle). The majority of ChR2-EYFP-positive cells are also TH-positive, as indicated by white arrows. Yellow arrow indicates a rare example of nonspecific labeling. B, Expression of
ChR2-mCherry (red) is restricted to calbindin-positive (green) neurons. Calbindin is a reliable marker of cerebellar Purkinje cells. The region within the white square is shown at a higher magnification
in C. Scale bars: A, 0.1 mm; B, 1 mm; C, 0.2 mm. Reproduced with permission from Stauffer et al. (2016) (A) and El-Shamayleh et al. (2017) (B, C).

Galvan, Stauffer et al. • Nonhuman Primate Optogenetics J. Neurosci., November 8, 2017 • 37(45):10894 –10903 • 10897



terminals often evoked saccadic eye
movements toward response fields corre-
sponding to the stimulation sites in the SC
(Fig. 4C,D; Inoue et al., 2015). This result
was in contrast to activation of cell bodies
in the FEF, where optical stimulation de-
creased reaction time but rarely evoked
saccades unless paired with electrical
stimulation (Gerits et al., 2012; Ohayon et
al., 2013). This suggests that the cell selec-
tivity achieved via projection targeting
can result in strong behavioral effects.

Pathway-selective stimulation after
anterograde transport of opsins has also
been used to study corticothalamic motor
circuits in NHPs. AAV-CaMKII�-ChR2
or AAV-CaMKII�-C1V1 was injected
into the motor cortices. Optogenetic ac-
tivation of corticothalamic terminals
modulated activity in ventral motor
thalamus neurons (Galvan et al., 2016).
In contrast to the shorter latency excita-
tions described in the oculomotor path-
way (Inoue et al., 2015), selective
optogenetic activation of corticotha-
lamic terminals resulted in long-latency
and complex physiological responses of
motor thalamic neurons, suggesting a
modulatory role for cortical afferents in
the primate motor thalamus.

Retrograde projection targeting
Retrograde transport capabilities can be
used to achieve cell type and pathway-
selective optogenetic control (Kato et al.,
2011; Oyibo et al., 2014; Tervo et al., 2016;
Tanabe et al., 2017). In these cases, viral
particles enter axon terminals at the injec-
tion site and are then transported along
the axon back to the cell body, where the
transgene will be transcribed. Efforts are currently ongoing to test
the efficacy of several varieties of retrograde viruses in NHPs,
including LVs with modified glycoproteins such as Fug-B, Fug-
B2, Fug-E, and Tloop (Kato et al., 2011; Hirano et al., 2013; Cetin
and Callaway, 2014; Kobayashi et al., 2016; Tanabe et al., 2017),
herpes simplex virus (Neve et al., 2005; Fenno et al., 2014), canine
adeno virus type 2 (Soudais et al., 2001; Salinas et al., 2009; Juny-
ent and Kremer, 2015), AAV serotypes with endogenous retro-
grade properties (Rothermel et al., 2013), and designer AAVs
with engineered retrograde capabilities (Tervo et al., 2016). One
study showed that an optimized chimeric envelope glycoprotein
(FuG-E) greatly accentuates the efficacy of retrograde gene deliv-
ery of a pseudotyped LV vector in the primate brain. Striatal
injection of the FuG-E-GFP vector-labeled neurons in regions
that project to the striatum, including cerebral cortex, thalamus,
and substantia nigra (Tanabe et al., 2017).

Transsynaptic targeting
Transsynaptic transport of viral particles or gene products holds
the promise to create widespread yet circuit-specific labeling to
investigate large-scale brain networks. In this case, the viral par-
ticles or gene products will travel anterogradely to the axon ter-
minals or retrogradely to the soma, where they will cross the
synapse to be incorporated into connected neurons (Gradinaru

et al., 2010; Nassi et al., 2015a). An important consideration is
that the retrograde spread may extend beyond one synapse. The
potential benefit is that using a transsynaptic vector will provide
optogenetic control over multisynaptic circuits, but the peril is
that some commonly used transsynaptic viruses are cytotoxic
(Nassi et al., 2015a). In rodents, some AAV serotypes (AAV1 and
AAV9) show anterograde transsynaptic transduction properties
(Zingg et al., 2017) that can be exploited along with Cre-
dependent expression to identify and modulate specific neuronal
pathways. Further engineering of transsynaptic vectors to reduce
toxicity and enhance transgene expression (Nassi and Callaway,
2007; Oyibo et al., 2014) will broaden their use in NHP optoge-
netic experiments. Using novel viral vectors to achieve selective
opsin expression based on synaptic connectivity would be partic-
ularly advantageous for studying large-scale brain networks in
NHPs.

Brain Size
Rhesus macaque brains are 200 times larger than mouse brains
and contain two orders of magnitude more neurons (Herculano-
Houzel, 2009). Therefore, a larger number of neurons should be
engaged for optogenetic modulation of NHP behavior compared
with rodent experiments. To achieve this, NHP optogenetic stud-

Figure 4. Neuronal and behavioral correlates of optical stimulation applied to specific neuronal populations. A, B, Neuronal and
behavioral correlates of stimulating dopamine neurons. A, Inset, Blue visual cue predicted liquid reward along with laser stimula-
tion, whereas the red visual cue predicted the delivery of reward alone. Peristimulus time histogram (PSTH; top) and raster plot
(bottom) demonstrate that dopamine neurons responded more strongly to the cue that predicted reward with laser stimulation
(blue) compared with cues that predicted reward alone (red). B, Probability of choosing the option associated with reward and
optical stimulation. Animals chose between a cue that predicted reward with optical stimulation and a cue that predicted reward
alone. Blue data (� and line) from one session with optical fiber in the injected hemisphere. Red data (� and line) from one
session with optical fiber placed in the noninjected, control hemisphere. � indicates choices for the option associated with optical
stimulation (top) or option associated with reward alone (bottom). Lines represent moving averages (sliding window with 10
steps) of the two choice sets. C, D, Neuronal and behavioral correlates of FEF to SC pathway stimulation. C, PSTH of SC neuronal
responses to FEF axon terminal stimulation separated according to whether a saccade was evoked (filled, red histogram) or not
evoked (black line). SC neurons responded more strongly after stimulation events that evoked a saccade compared with stimula-
tions that did not evoke a saccade. D, Polar plot of the magnitude (r) and direction (�) of optogenetically evoked saccades. Red lines
indicate the averaged vector of evoked saccades at each stimulation site (n � 15). Saccade toward center of response field is
represented by r � 1.0, � � 0. Reproduced with permission from Stauffer et al. (2016) (A, B) and Inoue et al. (2015) (C, D).
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ies require opsin expression across large brain areas, opsins with
enhanced light sensitivity, and broad light delivery. High levels of
opsin expression across large brain areas can be achieved by using
enhanced viral vector delivery techniques and selecting viral vec-
tor types that diffuse easily through brain tissue. MRI guidance
and convection enhanced infusion have been applied successfully
to deliver large volumes of viral vectors to precise locations in the
NHP brain (Bankiewicz et al., 2000; Yazdan-Shahmorad et al.,
2016). Similarly, LV and AAV viral vector subtypes can be se-
lected to maximize the spread of the viral solution and transduc-
tion of neurons (Gerits et al., 2015; El-Shamayleh et al., 2016).

Light is absorbed as it propagates in the brain. Oxygenated
hemoglobin is the major source of visible light absorption in
living brain tissue and red light is the least absorbed visible wave-
length spectrum (Eggert and Blazek, 1987; Robles et al., 2010). In
vivo measurements from rodent cortex at a depth of 1.5 mm
showed that five times as much red light remained unabsorbed
compared with green or blue light (Acker et al., 2016). Therefore,
next generation opsins that are activated preferentially by wave-
lengths closer to the red spectrum, including VChR1 (Zhang et
al., 2008), C1V1 (Yizhar et al., 2011), Jaws (Chuong et al., 2014),
Chrimson (Klapoetke et al., 2014), ReaChR (Lin et al., 2013), and
BReaChES (Rajasethupathy et al., 2015), show promise for large-
volume tissue modulation in primates. C1V1 stimulation of prin-
cipal neurons in somatosensory cortex in macaques is sufficient
to elicit a sensation (May et al., 2014), a finding that could be
exploited to mimic sensory stimulation when sensory functions
have been compromised (e.g., in the development of neuropros-
theses for stroke or spinal cord injury). Research with C1V1
opsins, along with multielectrode arrays, revealed spatiotemporal
dynamics in the monkey motor cortical networks (Lu et al., 2015).
Likewise, C1V1 opsins have been used to test the computational
properties of V1 neurons (Nassi et al., 2015b) and to demonstrate
that optogenetic activation of the lateral intraparietal area can bias
eye movements during a visuospatial discrimination task (Dai et al.,
2014).

Light must be delivered more broadly in primates than in
rodents to affect functionally relevant neuronal populations. In-
deed, some of the early failures to observe behavioral effects of
optogenetic stimulation in FEF (Han et al., 2009) have been over-
come by improving light delivery (Gerits et al., 2012; Acker et al.,
2016). Strategies to increase the extent of brain tissue illuminated
include the use of probes that combine multiple fibers (Tamura et
al., 2012) or optic fibers with a tapered end (Dai et al., 2015; Acker
et al., 2016, 2017).

In one study, an improved optrode combined with the red-
shifted inactivating opsin Jaws inhibited �90% of macaque FEF
neurons over a 10 mm 3 tissue volume (Acker et al., 2016). This
result is comparable to the volumes inactivated in cortical
cooling (Chafee and Goldman-Rakic, 2000) and pharmaco-
logical inactivation studies (Sommer and Tehovnik, 1997;
Tehovnik and Sommer, 1997; Martin and Ghez, 1999). The
optogenetic inactivation was effective at low light intensities
and resulted in large behavioral changes (Acker et al., 2016).
Therefore, the use of enhanced light delivery and red-shifted
opsins to perturb large populations of neurons renders opto-
genetic manipulations more effective at modulating NHP be-
havior.

Minimizing Tissue Damage
In optogenetic experiments, tissue can be damaged by light-
induced heating and repeated probe insertion. Limiting excessive
tissue heating is essential because cortical temperature increases

of �4°C may induce damage. Moreover, temperature increases
could result in unwanted side effects such as neuronal firing in-
creases in some heat-sensitive brain areas in response to �2°C
temperature increases (Kiyatkin and Brown, 2004; Kiyatkin,
2004; Kiyatkin, 2005, 2007). Illumination-induced heteroge-
neous neuronal firing patterns can be effectively eliminated by
monitoring tissue heating and limiting light power to avoid a
�1°C temperature increase (Acker et al., 2016).

Although experiments in superficial cortical regions can be
performed through optical windows using noninvasive light
sources (Ruiz et al., 2013; Yazdan-Shahmorad et al., 2016), stud-
ies of deep cortical layers or subcortical structures require re-
peated probe insertion, with consequent tissue damage. There is a
tradeoff between fiber outer diameter and tissue damage. Thicker
fibers deliver more light but increase tissue damage induced by
probe insertion, especially in acute experiments. Furthermore,
when combined recordings and stimulation are desired, the tra-
ditional approach of using optrodes fabricated by gluing a fiber to
an electrode might induce greater damage because these probes
are prone to shearing and cutting brain tissue.

There has been steady progress in developing multishank and
coaxial probes (Abaya et al., 2012; Wang et al., 2012; Chen et al.,
2013; Ozden et al., 2013; Lee et al., 2015; Naughton et al., 2016)
that minimizes these problems. The use of tapered-end fibers
results in reduced brain damage compared with optical fibers
with a blunt end (Dai et al., 2015; Acker et al., 2016, 2017;
Pisanello et al., 2017; Tamura et al., 2017). An alternative to the
repeated optrode penetrations is the use of chronically implanted
multielectrode arrays that incorporate an optic fiber for opsin
activation (Lu et al., 2015), or micro-electrocorticographic lam-
inar arrays for cortical surface recordings (Yazdan-Shahmorad et
al., 2016).

Looking toward translational approaches may further inspire
engineering innovations in primate optogenetics. For example,
when laser thermal ablation is used to treat otherwise inoperable
brain tumors and epileptogenic foci in human patients, repeated
penetrations are avoided, if possible, to minimize penetration
damage (Missios et al., 2015). Further, in proportion to total
brain size, the diameter of optical fibers currently in use for hu-
man thermotherapy, �600 �m (Norred and Johnson, 2014), is
less than that used in NHPs (about 200 – 400 �m for optrodes).
During human surgeries, the temperature of surrounding tissue
during laser ablation is monitored to minimize collateral tissue
damage (Missios et al., 2015). Based on current laser use in
human neurosurgery, reasonable future directions for NHP op-
togenetics many include temperature monitoring, chronic or
semichronic light probes to limit repeated penetrations, and re-
ductions in illuminator/electrode diameter.

In Vivo Assessment of the Temporal Course and
Expression Level of the Opsins
Currently, most researchers depend on postmortem histological
examination to confirm the correct targeting of brain regions or
cell types and level of opsin expression. Ideally, a noninvasive in
vivo method would monitor opsin expression after virus injec-
tions and before starting functional experiments. If the opsins are
expressed in neurons inhabiting superficial cortical layers, imag-
ing of the fluorescent reporter can be used to gauge opsin expres-
sion through optical windows (Ruiz et al., 2013). For subcortical
structures, fluorescence can be detected in vivo using an optic
fiber positioned in the injected area (Diester et al., 2011; Tamura
et al., 2012; Ozden et al., 2013; Tamura et al., 2017). This method
is encumbered by the damage inflected on the tissue by probe
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insertion, but may be preferable to postmortem verification. As
an example, in one study of the role of the perirhinal cortex in
behavioral judgements of object semantic value, researchers used
a multifiber optogenetic probe that provided improved light de-
livery, minimized tissue damage, and monitored opsin expres-
sion (Tamura et al., 2017).

A radically different approach to minimizing tissue damage
and assessing transgene expression is to pursue an all-optical in-
terrogation (AOI) strategy (Rickgauer et al., 2014; Emiliani et al.,
2015). AOI involves coexpression of an activity reporter gene
(e.g., GCaMP) and an actuator (e.g., red-shifted opsin) and the
use of a single optical probe to image and perturb activity. AOI
has several advantages over traditional electrophysiology. First, a
much larger set of neurons can be monitored simultaneously
compared with single electrode or even multishank probes. Sec-
ond, it is possible to identify activity arising from specific neurons
reliably. Third, structured illumination patterns can be applied to
study local connectivity and dynamics. AOI experiments in ro-
dents have used gradient refractive index (GRIN) lenses (Ghosh
et al., 2011; Ziv et al., 2013), but at the cost of significant tissue
damage above the region of interest (i.e., brain aspiration; Bar-
retto and Schnitzer, 2012), which may not be acceptable in stud-
ies involving NHPs. Furthermore, commonly available GRIN
lenses are 2–5 mm in length, not long enough to reach deep
subcortical regions in NHPs. A recent study tested a new mi-
croendoscope design consisting of ultrathin multimode optical
fibers that are 5–10 times thinner than commercially available
GRIN lenses and have no length constraint (Ohayon et al., 2017).
These fibers are of the same type as those traditionally used in
NHP optogenetic experiments (Diester et al., 2011) and fiber
photometry (Gunaydin et al., 2014; Kim et al., 2016). However, in
contrast to fiber photometry, this new design allows for full image
reconstruction beneath the fiber down to a micron-scale resolu-
tion. Furthermore, it allows the delivery of light patterns (struc-
tured light) at the fiber tip for precise stimulation of only a subset
of neurons in the field of view. Ongoing experiments are under
way to test this technology in NHPs and make it accessible for end
users.

Conclusion
Human perception, action, and cognition are largely dependent
on specialized brain networks that arose during the evolution of
primates. This specialization renders NHPs, especially Old World
monkeys such as Rhesus macaques, an invaluable animal model
with which to investigate human brain function. Modern neurosci-
ence has been reshaped by game-changing technologies including
optogenetics and genetically coded calcium indicators that are
most effectively applied to transgenic animals. Although trans-
genic Rhesus macaques have been created successfully (Yang et
al., 2008; Liu et al., 2016), economic considerations and the long
generation time may limit the utility of transgenic Old-World
monkeys in neuroscientific research. Moreover, the successful
implementation of emerging (optogenetic) technologies in wild-
type macaques will provide a rich foundation for the translational
application of circuit-based therapy to humans. Therefore, devel-
oping methods to facilitate the application of genetic techniques
for controlling and monitoring neural activity in NHPs is one the
most critical challenges in modern neuroscience.

Recent studies have achieved effective application of optoge-
netics to NHPs by demonstrating cell type specific expression
using gene promoters, selective projection targeting, improved
light delivery, and opsins with improved light sensitivity. As re-
viewed here, cell type specific promoters have been used to study

the function of konio cells in the LGN, dopamine neurons in the
midbrain, and Purkinje cells in the cerebellum (Fig. 3). The use of
cell type specific promoters brings NHP neuroscience one step
closer to the capabilities of transgenic mouse studies. Moving
forward, the development or discovery of new regulatory se-
quences that confer selective expression in a wide array of neuro-
nal types will be one of the greatest challenges that we face. Most
genes are expressed in many cell types, rather than being cell type
specific. Moreover, it is not clear how conserved noncoding tran-
scriptional regulatory regions are, so it is not clear which mouse
promoters will be effective in monkeys (Suzuki et al., 2004). To
advance the field, studies in which promoters can be screened or
engineered in a high-throughput fashion may hold the key to
unlocking a wider array of cell type specific promoters (Portales-
Casamar et al., 2010; Schlabach et al., 2010; Rajkumar and
Maerkl, 2012; Smith et al., 2013).

Projection targeting, which does not rely on cell type specific
promoters, but rather relies on anterograde trafficking of opsins
or retrograde transport of viral particles (Fig. 2), has already been
used to reveal the functional roles of motor control networks
(Inoue et al., 2015; Galvan et al., 2016). New viral vectors with
selective and improved retrograde transport properties present
an opportunity to photo-identify cells that project to a region of
interest. This technology will make it feasible to record selectively
from afferent neurons and discover how neural circuits process
information. Moreover, a likely contributor to the absence of
observed behavioral correlates in early optogenetic experiments
is coactivation of competing neuronal populations that cancel
each other’s effect. It may be possible, therefore, to increase the
size of observed behavioral effects by increasing cell type selectiv-
ity. Indeed, targeting specific neuronal populations, whether via
gene promoter or pathway tracing, has resulted in sizable behav-
ioral effects after optical stimulation (Fig. 4) (Inoue et al., 2015;
Stauffer et al., 2016; El-Shamayleh et al., 2017). These advances
bode well for the future of investigating neural signals and their
relationship to well controlled behaviors in NHPs.

Traditionally, similar optical probes were used to deliver light
in mice and monkeys despite the fact that the monkey brain is two
orders of magnitude larger than that of the mouse. By combining
light delivery probes that have tapered endings with red-shifted
opsins, large volumes of brain tissue (�10 mm 3) can be illumi-
nated by a single probe (Acker et al., 2016, 2017). Moreover,
because probes with tapered ends reduce the damage caused by
probe insertions, multiple probes can be inserted, maximizing
the chance to (in-)activate entire monkey brain regions.

In summary, we are substantially closer to optogenetics being
applied in NHPs as effectively as it is applied in rodents. Further
progress in NHP optogenetic experiments and translation to
human medicine will depend on the rapid dissemination of tech-
nical advances and setbacks faced in the course of these experi-
ments. Indeed, given the larger expenses and time needed for
primate experiments relative to other species, communication of
negative or incremental findings in optogenetic (or similar) tech-
niques may be particularly beneficial for the NHP research com-
munity. The new developments reviewed here highlight the value
of primate optogenetics to reveal the mechanistic insights into
the brain circuits that support perception, action, and cognition
and how their dysfunction gives rise to human pathologies.
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