5532 « The Journal of Neuroscience, May 18,2016 - 36(20):5532—5543

Systems/Circuits

Contour Curvature As an Invariant Code for Objects in
Visual Area V4

Yasmine El-Shamayleh and Anitha Pasupathy
Department of Biological Structure, Washington National Primate Research Center, University of Washington, Seattle, Washington 98195

Size-invariant object recognition—the ability to recognize objects across transformations of scale—is a fundamental feature of biolog-
ical and artificial vision. To investigate its basis in the primate cerebral cortex, we measured single neuron responses to stimuli of varying
size in visual area V4, a cornerstone of the object-processing pathway, in rhesus monkeys (Macaca mulatta). Leveraging two competing
models for how neuronal selectivity for the bounding contours of objects may depend on stimulus size, we show that most V4 neurons
(~70%) encode objects in a size-invariant manner, consistent with selectivity for a size-independent parameter of boundary form: for
these neurons, “normalized” curvature, rather than “absolute” curvature, provided a better account of responses. Our results demon-
strate the suitability of contour curvature as a basis for size-invariant object representation in the visual cortex, and posit V4 as a

foundation for behaviorally relevant object codes.
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ignificance Statement

Size-invariant object recognition is a bedrock for many perceptual and cognitive functions. Despite growing neurophysiological
evidence for invariant object representations in the primate cortex, we still lack a basic understanding of the encoding rules that
govern them. Classic work in the field of visual shape theory has long postulated that a representation of objects based on
information about their bounding contours is well suited to mediate such an invariant code. In this study, we provide the first
empirical support for this hypothesis, and its instantiation in single neurons of visual area V4.
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Introduction

The ability to recognize objects regardless of scale is a fundamen-
tal feature of primate vision, and is thought to be mediated by
neurons at the final stages of cortical form processing that encode
objects in a size-invariant manner (Schwartz et al., 1983; Desi-
mone et al., 1984; Gross et al., 1993; Sary et al., 1993; Ito et al.,
1995; Logothetis and Sheinberg, 1996; Tanaka, 1996; Hikosaka,
1999; Brincat and Connor, 2004; Liu et al., 2009; Rust and Di-
Carlo, 2010). Here, size-invariant coding refers to neuronal tun-
ing that is independent of stimulus size; size may modulate the
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response magnitudes of neurons but not their stimulus prefer-
ences. It remains unclear, however, how this tuning invariance
emerges across successive stages of cortical processing. To probe
its basis in the primate cortex, we studied the scale dependence of
neuronal tuning for object shape in visual area V4, an area en-
riched with shape-selective neurons, and the major source of
feedforward inputs to the inferotemporal cortex (IT), where size-
invariant signals have been reported.

Many V4 neurons are selective for the shape of local contour
segments along an object’s boundary; convex or concave seg-
ments at specific positions relative to object center (Pasupathy
and Connor, 1999, 2001). To determine their putative contribu-
tions to invariant object representation and recognition, we
asked whether V4 neurons sensitive to boundary form encode
their preferred contour segments in a size-invariant or size-
dependent manner. When an object is scaled, its shape is pre-
served but the curvature of its bounding contour changes; for
example, the curvature of a circle halves when its radius doubles.
Thus, a neuron that encodes objects in terms of local contour
curvature will show systematic changes in stimulus preferences
across size, and thus cannot mediate a size-invariant representa-
tion of objects. This raises the question of whether V4 neurons
that have been previously reported to signal boundary form are
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Figure 1.  Experimental design. A, Parametric shapes with systematic variations in contour
curvature. When a shape is scaled, the absolute curvature of a contour segment (convex, red;
concave, blue) changes but its normalized curvature does not. Diagonal lines of constant abso-
lute curvature are only illustrative; the empirical slope of these lines depends on the stimulus
scales tested and the neuron’s curvature sensitivity. Schematics for computing absolute and
normalized curvature of a contour segment are shown. B, Overlaid convex and concave shapes
(left and right) show that the convex projection and concave indentation at the top were varied
systematically to span a range of curvature values while maintaining the rest of the boundary
similar across stimuli. C, In the scale test, all shapes were presented at several scales within the
RF (dashed circle), typically 0.4 —1.0 < RF size. D, In the position test, only convex shapes at a
single intermediate scale (0.8 <) were presented at different locations to control for the posi-
tional shifts that were induced by scaling. For concave shapes, the position of the concave
indentation did not change as a function of stimulus size (C).

indeed selective for absolute curvature, a size-dependent param-
eter defined as the rate of change of the tangent angle per unit of
contour length (Fig. 1A), or whether they might be selective for a
size-invariant transform of curvature. For example, curvature
can be rendered size-invariant when normalized by object size;
curvature defined as the rate of change of the tangent angle per
unit of angular length yields a size-invariant representation of
boundary form (Fig. 14). Thus, a neuron that encodes objects in
terms of curvature that is normalized by stimulus size, ie, nor-
malized curvature, can mediate a size-invariant representation of
objects.

Previous work has demonstrated that the selectivity of V4
neurons for local contour segments can be explained qualitatively
and modeled quantitatively in terms of curvature (Pasupathy and
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Connor, 2001). However, because these measurements were
based on neuronal responses to stimuli at a single scale, their
results cannot address whether V4 neurons encode these con-
tours in terms of absolute or normalized curvature. Here, using a
set of visual stimuli in which we systematically varied the curva-
ture and scale of object contours within individual neuronal re-
ceptive fields (RFs), we determined which of these two coding
schemes, absolute or normalized curvature, provided the best
quantitative account of contour-based object representation in
area V4. In so doing, our work provides new insights into the
neural foundations of invariant object recognition in the primate
cortex.

Materials and Methods
Neurophysiology

Extracellular neural recordings were performed in two adult male rhesus
macaques (Macaca mulatta) using epoxy-coated tungsten microelec-
trodes (250 wm, FHC) lowered into cortex through an 8-channel acute
Microdrive system (Gray Matter Research). Voltage signals were ampli-
fied and bandpass filtered (0.1-8 kHz) using a 16-channel recording
system (Plexon Systems); the waveforms of single units were isolated
manually using spike-sorting software (Plexon Systems). Recording
chambers were centered on dorsal area V4 along the prelunate gyrus,
extending between the lunate sulcus and the superior temporal sulcus.
RFs were in the contralateral, inferior visual quadrant at 3°~12° of eccen-
tricity (median 5°), and were 4°~11° in diameter (median 6°). We re-
corded data from 186 well isolated neurons in total (82 and 104 from
Monkeys 1 and 2, respectively); data from 80 of these neurons are in-
cluded in this report (50 and 30 from Monkeys 1 and 2, respectively). Our
inclusion criteria were as follows: (1) that data from at least five repeats of
the stimulus set were collected (5-16 repeats; median 10); and (2) that the
neuron was visually responsive and selective for shape stimuli: to be in-
cluded, a neuron had to respond to one or more stimuli with a firing rate at
least four times baseline (across neurons, the maximum response was, on
average, 20 times baseline). Most neurons excluded from our analyses were
removed due to insufficient number of stimulus repeats (18 and 69 neurons
from Monkeys 1 and 2, respectively, thus sparing data from 64 and 35 neu-
rons from each subject). Of the remaining neurons, a smaller subset was
excluded due to weak shape selectivity (14 and 5 neurons from Monkeys 1
and 2, respectively). All experimental procedures conformed to NIH and
USDA guidelines and were approved by the Institutional Animal Care and
Use Committee at the University of Washington.

Visual stimulation

Stimuli were presented on a gamma-corrected CRT monitor (ViewSonic
VS11135) positioned directly in front of the animal (at 49 and 53 cm for
Monkeys 1 and 2, respectively); the display had a resolution of 1600 X
1200 pixels, a refresh rate of 97 Hz and a mean luminance of 5.4 cd/m 2,
Animals were required to passively view the visual stimuli while main-
taining fixation of a 0.1° central target within a window of radius 0.75°%
eye position was monitored using an infrared tracking system (Eyelink
1000, SR Research; 1 kHz). Stimuli were presented for 300 ms each with
an interstimulus interval of 200 ms, and were randomly interleaved. On
asubset of trials, no stimulus was presented to allow for the measurement
of baseline activity. Stimulus and behavioral events were controlled by
custom, Linux-based software written in Python (Pype, originally devel-
oped by J. L. Gallant and J. Mazer).

We used parametric shape stimuli with systematic variations along one
portion of the bounding contour (Fig. 1A), some with convex projections
and others with concave indentations, herein referred to as “convex” and
“concave” shapes, respectively (Fig. 1B). Each convex and concave shape
was presented at 8 rotations (0°-315° 45° steps). Most neurons (65/80)
were tested with all 13 shapes, as shown; the remaining neurons (15/80),
recorded in our earliest sessions, were tested with a smaller subset of nine
shapes that excluded the two most extreme convex and concave shapes.
In the “scale test” (Fig. 1C), we presented all the shapes at several scales
within the neuron’s RF; stimulus scales were expressed as fractions of RF
size (typically 0.4, 0.6, 0.8, and 1.0X). Most neurons were tested with four
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or five stimulus scales (41/80 and 36/80, respectively; additional scale was
0.2X); a few neurons, recorded in our earliest sessions, were tested with
three scales (3/80). In the “position test” controls (Fig. 1D), only convex
shapes at a single stimulus scale (0.8 X) were presented at locations that
matched the positional shifts induced by scaling. Trials of the scale test
and the position test were randomly interleaved in the same experimental
sessions to ensure identical recording conditions.

Initial characterization of units

For each neuron recorded, we first identified the shape, rotation and
color of a stimulus that evoked a strong neuronal response. We then used
this stimulus to obtain a qualitative and quantitative estimate of the
neuron’s spatial RF. For most neurons recorded (56/80), we mapped the
RF by presenting the chosen stimulus at a grid of locations centered on
the qualitative estimate. The number of grid locations tested depended
on the qualitative estimate of RF size: it ranged from 7 X 7to 10 X 10, and
was typically 8 X 8. We fit the resulting response surface with a 2D
Gaussian function, with the major and minor axes constrained to be the
same, and used the fit’s center coordinates and SD as quantitative esti-
mates of the RF position and size, respectively. The RF radius was largely
guided by the SD from the quantitative mapping procedure (RF radius =
2 X SD), but also by the expected RF radius at the corresponding eccen-
tricity, in accordance to published measurements (Gattass et al., 1988).
For neurons for which we did not map the RF quantitatively (24/80), we
ensured that there were no visually evoked responses beyond the quali-
tatively estimated RF. For all neurons recorded, the largest scale tested
was always within the RF. After this initial characterization, we pro-
ceeded to the main experiment in which we presented shape stimuli at
several scales and positions within the RF (Fig. 1C,D).

Analysis of neural data

For each neuron recorded, and for each stimulus condition, we com-
puted the firing rate over the entire stimulus presentation time (0—-300
ms), averaged across stimulus repeats. These responses formed the basis
for several analyses as described below. Baseline responses were com-
puted from trials in which the stimulus was absent; because these re-
sponses were typically low (median 1.6 ips), we based our results on
average neuronal responses without baseline subtraction.

Optimal stimulus rotation. Given that V4 neurons are selective for the
position of a preferred contour segment relative to object center (see Figs.
5, 6), we first identified the optimal stimulus rotation for each neuron as
that which included the peak response. For almost all neurons (90%),
this rotation also showed the largest dispersion of responses at a partic-
ular stimulus size, where dispersion was computed as the variance-to-
mean ratio of responses. This procedure allowed us to identify a set of
shapes that evoked strong and differential responses from each neuron.
We then quantified the change in the neuron’s tuning curve as a function
of stimulus size by computing the tuning curve centroid.

Tuning curve centroid. To assess whether neurons changed their stim-
ulus preferences as a function of size, we identified the average preferred
stimulus at each scale tested. We computed the centroid of the neuron’s
tuning curve at the optimal stimulus rotation, and only for the responses
to either the convex or concave shapes, whichever had the highest cumu-
lative response. The tuning centroid was computed as follows:

TiXi

s

i=1

tuning curve centroid =

v

Ti
1

where r; is the response to the ith shape, and x; is the position (ie, numer-
ical order) of the ith shape, and N is the number of stimuli. For this
analysis, we only included stimulus scales for which the neuron was
visually responsive, ie, scales where the average response to at least one
shape exceeded the baseline response. For each neuron, we then exam-
ined whether the tuning centroids change across scales (see Fig. 3), per-
forming a linear regression and extracting the slope as a metric for the
change in stimulus tuning.

Separability index. To assess whether neuronal selectivity was indepen-
dent of stimulus size, we computed a separability index based on singular
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value decomposition of the tuning curves at all scales (Pefia and Konishi,
2001; Mazer et al., 2002), as follows:

S A1)
separability index = ——

> A6

i=1

where A(1) and A(i) are the magnitudes of the first and ith singular
values, respectively, and N is the total number of scales tested. Index
values are bound between 0 and 1: with 0 indicating complete lack of a
separable component and 1 indicating full separability. We computed
the separability index in two ways: for tuning curves at only the optimal
stimulus rotation and at all rotations. We also computed a related quan-
tity, the size consistency index, which has been used previously to assess
size invariance in IT cortex, and which yielded identical results (Brincat
and Connor, 2004; Rust and DiCarlo, 2010).

Model fitting. We identified each neuron’s preferred contour segment
by fitting the curvature model, as detailed previously (Pasupathy and
Connor, 2001). Briefly, we modeled the neuron’s shape preferences at a
single stimulus scale (typically 0.8 X RF size, except for 8 neurons that
responded most strongly to stimuli at the smallest scale) as a function of
several parameters of contour shape. In this model, the neuron is opera-
tionalized as a filter in a multidimensional shape space defined by curva-
ture and angular position.

Each shape was decomposed into eight contour segments, represent-
ing approximately equal proportions of the overall contour length (for
details, see Pasupathy and Connor, 2001); these included the different
convex projections and concave indentations along the boundary. Each
segment was characterized by two parameters: angular position and cur-
vature. Curvature was computed as the rate of change in tangent angle
with respect to contour length. Following previous work, we used a
squashing function to map raw curvature values onto a scale from —1.0
(sharp concave) to +1.0 (sharp convex), as follows:

2
EA e wmw !

where ¢ and c,,,, represent the magnitudes of squashed and raw curva-
ture, respectively, and «a determines the slope of the sigmoidal squashing
function. We allow a to vary across neurons in the current study, instead
of keeping it fixed, to account for different neuronal sensitivities to
curvature.

A neuron’s predicted response r to a particular shape described by p
boundary segments is given by the product of N-Gaussians, N being the
number of stimulus dimensions contributing to the response:

r = max [k Gi]
» =1

where k is the amplitude of the multidimensional Gaussian, and G; is the
Gaussian along the ith dimension of stimulus space (eg, curvature, ad-
joining curvature, etc), of the form:

—

G, = ¢ (xp— i) 20}
1

where x;, represents the value of the stimulus parameter along the ith
dimension, and w; and o; are the mean and SDs of the Gaussian, respec-
tively. As done previously (Pasupathy and Connor, 2001), we imple-
mented a version of the curvature model, which incorporated four
dimensions of shape space, as follows:

r=max [k * Ga + Gc -
»

GCCW : GCCCW]

where Ga is a von Mises probability density function along the dimension
of angular position, and Gc, Gc.,,, and Gc,, are Gaussians along the
dimensions of primary curvature, adjacent contour curvature, clockwise,
and counterclockwise, respectively.

We searched for the best fitting model parameters using a nonlin-
ear least-squares optimization routine, implemented in MATLAB
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(Isqnonlin). The model included 10 parameters (k, «, and several w;
and o; terms). Depending on the number of shapes tested (N = 9 or
13), these parameters were used to fit a total of 65 or 97 responses,
where the number of responses was equivalent to [(N — 1 shapes X 8
rotations) + (1 circle shape X 1 rotation)]; the circle shape was only
shown at a single rotation due to its rotation invariance. To avoid
overfitting, we used a cross-validation approach, training the model
with 75% of the data and testing the model on the remaining 25%.
The model’s goodness-of-fit was computed as the average Pearson’s
correlation coefficient between observed and predicted responses for
all iterations of the cross-validation procedure (N = 50 iterations).
The best fitting model was chosen to have the highest cross-validated
performance on both the training and testing datasets; this was the
model most commonly returned by different iterations of the cross-
validation procedure.

Model predictions. We used the neuron’s best fitting model parameters
to generate predicted responses to stimuli at other scales. To generate the
absolute curvature model predictions, we first calculated the raw curva-
ture values at each stimulus size by scaling the curvature value by an
amount proportional to the inverse of stimulus size; for example, a con-
vex contour segment with a curvature value of +0.5 at scale 0.8 X corre-
sponds to a curvature value of +1.0 at scale 0.4X. To generate the
normalized curvature model predictions, we used the same set of raw
curvature values to fit the responses to stimuli at each scale; ie, we did not
scale the raw curvature values for different stimulus sizes. Importantly,
the equations for the curvature model, shown earlier, governed the re-
sponses of both competing models (absolute and normalized curvature),
with the only difference being how the curvature parameter ¢ changes as
a function of stimulus size; ¢ scales inversely with size in the absolute
curvature model but it does not scale with size in the normalized curva-
ture model. To account for possible response gain modulations across
scale transformations, we fit a scaling parameter to the observed re-
sponses at each scale.

Partial correlations. To assess which of the two competing models (ab-
solute or normalized curvature) provided a better account of the ob-
served neuronal responses at different scales, we compared the
performance of the two models directly using partial correlation analy-
ses, as was done previously to classify the responses of MT neurons to the
motion of complex patterned stimuli (Movshon et al., 1985; Smith et al.,
2005). For each neuron, we generated two response predictions: an ab-
solute curvature prediction and a normalized curvature prediction, as
described earlier. We then computed the partial correlations between the
observed responses and each prediction, and transformed these correla-
tions into normal deviates using Fisher’s r-to-Z transform. In accordance
with previous studies (Movshon et al., 1985; Smith et al., 2005), the
r-to-Z transform was normalized by the degrees of freedom (df), equiv-
alent to the number of independent samples that contribute to the neu-
ronal response, minus three. In our case, the number of independent
samples was the number of shapes multiplied by the number of stimulus
scales tested; ie, df was computed as follows: [(number of shapes X
number of scales) —3]. We used data from all stimulus rotations to better
constrain the model fitting procedure, but we did not incorporate the
number of rotations tested into the calculation of df because most neu-
rons responded primarily to stimuli at one rotation (see Figs. 5, 6); this is
a conservative strategy because including all rotations would increase df
and thus cause more neurons to achieve statistical significance. We used
the difference between the Z-transformed normalized curvature correla-
tion (Zn) and the Z-transformed absolute curvature correlation (Za) as a
classification index. To be classified as selective for normalized curvature,
the index must be positive; to be classified as selective for absolute cur-
vature, the index must be negative. Furthermore, the magnitude of this
index had to exceed a criterion value of 1.28 (equivalent to p < 0.1);
otherwise, neurons were unclassified. The main results from these anal-
yses (see Fig. 8) were based on neuronal responses at all stimulus rota-
tions and scales. However, we also implemented several other variants of
these analyses in which we: (1) excluded responses to the stimulus scale
on which the model fitting was constructed, (2) included responses only
at the smallest and largest stimulus scales tested, and (3) included re-
sponses at only the optimal stimulus rotation and at all scales tested. All
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of these variations yielded qualitatively similar results, and we therefore
focus on reporting the results based on neuronal responses at all stimulus
rotations and scales.

Results

To determine whether V4 neurons represent objects in a size-
dependent or size-invariant manner, we recorded well isolated
single units in two awake, fixating macaques (N = 80; see Mate-
rials and Methods), characterizing their responses to visual shape
stimuli presented at different scales within the RF.

Experimental paradigm

To probe neuronal preferences for the bounding contours of
objects, we used a set of parametric shape stimuli with systematic,
local variations in boundary form (Fig. 14; see Materials and
Methods). Some shapes had convex projections whereas others
had concave indentations (Fig. 1A, red and blue segments); we
will herein refer to these as convex and concave shapes, respec-
tively. The convex and concave shapes (Fig. 1B) provided a finer
sampling of contour curvature than in previous studies (Pasupa-
thy and Connor, 2001; Bushnell et al., 2011). Importantly, this
dense sampling along the dimension of curvature ensured sub-
stantial overlap in the contour curvature values tested at different
stimulus scales, allowing us to distinguish putative size-
dependent and size-invariant codes for object representation.
The convex and concave shapes were each presented at eight
rotations. In the main experiment, the scale test (Fig. 1C), we
presented all stimuli at several scales inside the neuron’s RF;
scales were expressed as fractions of RF diameter, typically 0.4—
1.0X (see Materials and Methods).

Response predictions

When a shape is scaled, the absolute curvature of the bounding
contour changes, but its normalized curvature remains the same
(Fig. 1A). If a neuron encodes absolute curvature, we therefore
expect that its stimulus preferences will change as a function of
size. Alternatively, if a neuron encodes normalized curvature, we
expect that its stimulus preferences will not change as a function
of size.

The two predictions are illustrated graphically for a neuron
that responds preferentially to convex shapes. If the neuron en-
codes absolute curvature (Fig. 2A), its tuning curve will change
systematically as a function of size; the neuron will respond best
to different shapes at different scales. Because of how we order
convex and concave shapes along the shape identity axis (ab-
scissa), the tuning curve will shift leftward with increasing size for
a neuron that prefers a convex projection (referred to as convex-
preferring), and rightward for a neuron that prefers a concave
indentation (concave-preferring). Alternatively, if the neuron
encodes normalized curvature (Fig. 2B), the tuning curve will not
change as a function of size; the neuron will respond best to the
same shape at all scales. Importantly, although both coding
schemes can account equally well for responses measured at a
single stimulus scale, they make different predictions for re-
sponses to the same stimuli at different scales. Note that neither
model precludes nor predicts changes in the overall response
magnitude across scale. We therefore focus primarily on assess-
ing systematic changes in neuronal selectivity for the contour
segment whose curvature we manipulate across the stimulus set
(ie, horizontal shifts along the abscissa, and changes in the shape
of the tuning curve). One way to assess tuning invariance analyt-
ically is to evaluate the centroid of the tuning curve at each scale,
and to examine the slope of the tuning centroids across scale (Fig.
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Figure 2.  Response predictions. These predictions are illustrated for a hypothetical neuron
selective for shapes with a convex projection at the top. 4, If the neuron encodes absolute
curvature, we expect systematic shifts in stimulus preference across scale, accompanied by
changesin the tuning centroid (triangles). B, If the neuron encodes normalized curvature, we do
not expect systematic shifts in stimulus preference or the tuning centroid across scale. C, Tuning
centroid across scale. The absolute curvature model predicts systematic shifts in the tuning
centroid as a function of size, yielding a line with a non-zero slope, whereas the normalized
curvature model predicts a line with a near-zero slope.

2C; see Materials and Methods). This analysis is most interpreta-
ble when applied to neuronal responses to shapes presented at the
optimal stimulus rotation, where the contour segment that drives
the responses is varied systematically. The tuning centroid is in-
tended to capture any systematic relative changes in the neuron’s
stimulus preferences across scale, including changes in the posi-
tion of the tuning curve peak and changes in the shape of the
tuning curve that cannot be explained by multiplicative gain
modulation. Note that although we graphically illustrate the ex-
pected shifts in the stimulus preferences of a neuron that encodes
absolute curvature as a slope of a particular value (Figs. 1, 2), the
empirical magnitude of the slope will depend on the neuron’s
sensitivity along the dimension of contour curvature, a fit param-
eter of the curvature model (see Materials and Methods).

Example responses

Consistent with previous studies (Pasupathy and Connor, 1999,
2001), the V4 neurons we recorded showed strong and differen-
tial responses to shape stimuli presented at some rotations, but
not others (see Fig. 5, 6). Thus, we first identified the optimal
stimulus rotation for each neuron (see Materials and Methods),
and then evaluated whether the neuron’s preferences for shapes
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Figure3. Example responses to the scale test. A-D, Data from four example neurons. Aver-
age firing rates to shapes at the optimal stimulus rotation (left). Responses to stimuli at differ-
entscales are color-coded (grayscale; expressed as a fraction of RF size); baseline firing rates are
also plotted (dashed lines). Tuning centroids across scale (right; also triangles on the left). The
responses of neurons in A and B were consistent with the absolute curvature prediction.
The responses of neurons in Cand D were consistent with the normalized curvature prediction.

at that rotation changed as a function of stimulus size. The re-
sponses of four example V4 neurons to shapes at the optimal
stimulus rotation and at different scales are shown (Fig. 3, left).
The responses of the first example neuron (Fig. 3A) resembled the
absolute curvature prediction; the neuron’s stimulus preferences
changed gradually as a function of size. For the largest scale
(1.0X), the tuning centroid corresponded to a shape with a sharp
convexity (see lightest gray triangle). For the smaller scales (0.4 —
0.8X), the tuning centroid shifted systematically toward shapes
with broader convexities (see darker shaded triangles). The neu-
ron’s overall response magnitude also grew with increasing scale,
although this observation is not constrained by the absolute cur-
vature prediction. The responses of the second example neuron
(Fig. 3B) were qualitatively similar: for larger scales, the tuning
centroid shifted systematically toward shapes with sharper con-
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vexities, although there was little change in its response magni-
tude. Thus, the responses of these example neurons were
consistent with selectivity for the absolute curvature of the pre-
ferred contour segment. In contrast, the responses of the third
(Fig. 3C) and fourth (Fig. 3D) example neurons resembled the
normalized curvature prediction. The tuning centroid remained
unchanged as a function of size (triangles are superimposed and
indistinguishable), consistent with selectivity for the normalized
curvature of the preferred contour segment.

Given that the tuning centroid will shift systematically for a
neuron that encodes absolute curvature but not for a neuron that
encodes normalized curvature (Fig. 2C), this metric’s trend
across scale provides a useful way to classify neurons: a neuron
sensitive to absolute curvature will have a non-zero slope whereas
a neuron sensitive to normalized curvature will have a zero slope.
For each neuron, we examined the tuning centroids across scale,
and computed the slope of the linear regression (Fig. 3, right). For
the first and second example neurons, the slopes were large and
negative in sign (—1.11, p =< 0.05; —0.94, p = 0.05, respectively),
indicating systematic shifts toward sharper convexities (ie, higher
curvature values) for larger stimulus scales. The negative slope
signs were consistent with selectivity for the convex projection, as
described earlier. For the third and fourth example neurons, the
slopes were near zero (—0.12, p = 0.40; +0.09, p = 0.34, respec-
tively).

Population data

Across all the neurons recorded (Fig. 4A; N = 80, N = 50, and
N = 30 from each animal, respectively), we found that most V4
neurons had near-zero slopes (median = —0.06, triangle), indi-
cating that they largely maintained their stimulus preferences
across scale transformations, as per the normalized curvature
prediction. Only a small subset of neurons had large slopes, indi-
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Figure 4.  Population analysis of changes in neuronal stimulus preferences across scale. 4,

Distribution of slopes of the tuning centroids as a function of size for all neurons recorded (N =
80). Only a small subset of neurons showed systematic shifts in their stimulus preferences, as
indicated by significant linear regression slopes (N = 13/80; black). B, €, Distribution of the size
separabilityindex derived from responses at the optimal stimulus rotation and at all rotations (B
and (, respectively). In both cases, neurons showed high separability indices (median = 0.97in
B;0.95in C; triangles).
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cating that their stimulus preferences changed gradually and sys-
tematically across scale transformations, as per the absolute
curvature prediction; of these neurons, only a small number had
significant regression slopes (N = 13/80; 16%; p = 0.05; black).
Consistent with this finding, the responses of neurons in our
dataset were also strongly size-invariant when assessed with a
more traditional, model-agnostic metric of linear separability
based on singular value decomposition (Pefia and Konishi, 2001;
Mazer et al., 2002; Brincat and Connor, 2004; Rust and DiCarlo,
2010), both for data at the optimal rotation and at all rotations
(Fig. 4 B, C; see Materials and Methods).

Model comparisons

Several factors determine the magnitude of the expected system-
atic changes in shape tuning as a function of stimulus size. These
include: the exact contour segment preferred by individual neu-
rons, how the curvature of this contour segment varies across the
convex and concave shapes at a given stimulus size, and how
sensitive each neuron is to curvature (operationalized as the
width of its tuning along the curvature dimension). To estimate
the expected changes, and to confirm that our stimulus design
and quantitative analyses were sufficiently sensitive to reveal sys-
tematic changes in stimulus preferences across size, we turned to
the absolute curvature model prediction and asked: for example
neurons, how much of a shift in the tuning centroid across scale
does this model actually predict?

We generated neuron-specific model predictions as follows.
First, we fit the curvature model to the neuron’s responses to
shapes presented at an intermediate scale (0.8X) and at all stim-
ulus rotations, following well established methods (see Materials
and Methods). Next, we used the resulting best fit to predict the
neuron’s responses to the same stimuli at different scales (see
Materials and Methods). From the model’s predicted tuning
curves at the optimal stimulus rotation (the same rotation as for
the observed data), we then computed the tuning centroid at each
stimulus scale and the linear regression slope, exactly as we had
done for the observed data, and compared the predicted and
observed slopes.

The observed and predicted responses (symbols and lines,
respectively) for an example neuron consistent with sensitivity to
absolute curvature are shown (Fig. 54; same neuron as in Fig.
3B). Here, unlike in previous figures, we show neuronal re-
sponses to shapes presented at each of the eight stimulus rota-
tions tested (panels). This neuron, like many others in V4, was
exquisitely sensitive to stimulus rotation; only a few rotations
elicited strong responses whereas many others elicited near-
baseline responses, consistent with position-specific tuning for
boundary form (Pasupathy and Connor, 2001). The optimal ro-
tation was 135° (Fig. 5A, row 1, left panel; see Materials and
Methods). The shape stimuli that elicited strong responses all
contained a convexity pointing to the lower left. This preference
was consistent with the optimal contour segment identified by
the model fitting procedure: a sharp convexity pointing to the
lower left, adjoined by a concavity in the counterclockwise direc-
tion (Fig. 5A, inset shape). The neuron’s observed responses and
the model’s predicted responses at an intermediate scale (0.8X)
were well matched; the model’s performance, computed as the
average Pearson’s correlation coefficient between observed and
predicted responses for all iterations of the cross-validation pro-
cedure, was 0.92 (see Materials and Methods). Focusing on the
neuron’s tuning curves at the optimal stimulus rotation, both the
observed and predicted responses shifted systematically as a func-
tion of stimulus size. Recall that the curvature model was only fit
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to the responses to stimuli at one scale
(0.8X); nevertheless, it could be used to
accurately predict responses to stimuli at
other scales by appropriately scaling the
curvature values. The model’s predicted
tuning curves at each scale, normalized by
the magnitude of the highest response, are
shown (Fig. 5B). For the convex shapes,
the predicted tuning curve shifted left-
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cating a systematic change in the neuron’s
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vexities. From these predicted tuning
curves, we extracted the tuning centroid at
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Observed and predicted responses for
a second example neuron consistent with
sensitivity to normalized curvature are
shown (Fig. 6A; same neuron as in Fig.
3C). The optimal rotation was also 135°
(Fig. 6A, row 1, left panel). As in the pre-
vious example, the observed neuronal re-
sponses and the model’s predicted
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scale (0.8X) were well matched; the aver-
age Pearson’s correlation coefficient was
0.97. The optimal contour segment iden-
tified by the fitting procedure was a sharp
convexity pointing to the lower left, ad-
joined by two concavities on either side
(Fig. 6A, inset shape). Focusing on the
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neuron’s tuning curves at the optimal
stimulus rotation, the observed responses
did not shift appreciably as a function of
size, although the model did predict mod-
est systematic shifts in stimulus tuning. To
see these shifts more clearly, we normal-
ized the model’s predicted tuning curves
at each scale (Fig. 6B). For the convex
shapes, the predicted tuning curve shifted
leftward with increasing stimulus scale,
indicating a systematic change in the mo-
del’s stimulus preferences toward sharper
convexities. The observed and predicted tuning centroids are
shown superimposed (Fig. 6C); the observed slope was near zero,
whereas the predicted slope was larger in magnitude.

Model comparisons for two additional example neurons are
provided (Fig. 7; only tuning curves at the optimal stimulus ro-
tation are shown). Both neurons responded preferentially to the
concave shapes in our stimulus set. For the first neuron (Fig. 7A),
both the observed and predicted tuning centroids shifted system-
atically as a function of stimulus size, consistent with sensitivity
to absolute curvature. For the second neuron (Fig. 7B), the ob-
served tuning centroids did not shift appreciably as a function of
stimulus size, consistent with sensitivity to normalized curvature,
although the predicted tuning centroids did shift systematically.
Collectively, these results confirm that our stimuli and analyses
were sensitive enough to reveal possible systematic changes in
neuronal stimulus tuning across size. These data also illustrate

Figure 5.

TI T I T I TTTTTT

shape stimulus

Absolute curvature model predictions for a neuron consistent with sensitivity to absolute curvature. A, Observed and
predicted responses at all stimulus rotations (symbols and lines, respectively; same neuron as in Fig. 3B). Each panel shows the
neuron’s tuning curves at one of eight stimulus rotations (0°~360°; 45° steps). The preferred contour segment identified by the
fitting procedure was a sharp convexity pointing to the lower left, adjoined by a shallow concavity in the counterclockwise direction
(see inset shape). B, The model’s predicted responses at the optimal stimulus rotation, normalized to the maximum predicted
response for each stimulus scale. ¢, Observed and predicted tuning centroids (black and red); the tuning centroid shifted system-
atically across scale, for both the observed and predicted responses.

that, consistent with our predictions (Fig. 2), neurons that en-
code absolute curvature and are convex-preferring have negative
slopes for the tuning centroids across scale, whereas neurons that
are concave-preferring have positive slopes.

The example neuronal responses and population analyses de-
scribed thus far suggest that some V4 neurons are sensitive to
absolute curvature, whereas others are sensitive to normalized
curvature. To quantitatively evaluate which of the two coding
schemes (absolute or normalized curvature) best accounted for
the observed responses of each V4 neuron recorded, we per-
formed direct comparisons of the two models on a neuron-by-
neuron basis. We generated two model predictions for each
neuron: an absolute curvature prediction and a normalized cur-
vature prediction (see Materials and Methods). We then com-
puted the partial correlations between the observed responses
and each of the two predictions and compared them
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prediction (Za, abscissa); dashed lines in-
dicate the statistical bounds used for clas-
sification (see Materials and Methods).
Across the population, Zn exceeded Za for
66 neurons (~83%), indicating that the
normalized curvature model provided a
better account of the responses of most V4
neurons. Of these neurons, the difference
between Zn and Za was statistically signif-
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Figure 6.

(Movshon et al., 1985; Smith et al., 2005; see Materials and Meth-
ods). For the first example neuron (Fig. 5), the r-to-Z trans-
formed partial correlation of the absolute curvature prediction
exceeded that of the normalized curvature prediction (Za = 4.01;
Zn = 2.39); this difference was significant and the neuron was
therefore classified as selective for absolute curvature (Za — Zn >
1.28; p < 0.1; see Materials and Methods). For the second exam-
ple neuron (Fig. 6), the r-to-Z transformed partial correlation for
the normalized curvature prediction exceeded that of the abso-
lute curvature prediction (Zn = 3.66; Za = 0.83); this difference
was significant and the neuron was therefore classified as sensi-
tive to normalized curvature (Zn — Za > 1.28; p < 0.1).

A scatter plot of the r-to-Z transformed partial correlation
values for each neuron recorded is shown (Fig. 8; N = 80). The
partial correlation value for the normalized curvature prediction
(Zn, ordinate) is plotted against that for the absolute curvature

Com ]
rTrrrrrrrrrTT

icant for 58 neurons (~73%; Zn — Za >
1.28; p < 0.1), and these were classified as
selective for normalized curvature (red).
Of the remaining 14 neurons for which Za
exceeded Zn, the difference between these
measures was statistically significant for
10 neurons (~13%), and these were clas-
sified as selective for absolute curvature
(black). For the 10 neurons that encode
absolute curvature, the observed and pre-

shape stimulus

data slope =-0.12
model slope = —0.68

Absolute curvature model predictions for a neuron consistent with sensitivity to normalized curvature. A, Observed
and predicted responses at all stimulus rotations (symbols and lines, respectively; same neuron as in Fig. 3¢; same format as in Fig.
5). The neuron’s responses were strongly selective for stimulus rotation. The preferred contour segment identified by the fitting
procedure was a sharp convexity pointing to the lower left, adjoined by a shallow concavity on either side (see inset shape). B, The
model’s predicted responses, normalized to the maximum predicted response for each stimulus scale; the model predicted small
yet systematic horizontal shifts of the tuning curve across scale. €, Observed and predicted tuning centroids (black and red); the
observed tuning centroids did not shift systematically, whereas those predicted by the model did.

dicted tuning centroid slopes were well
matched (r = 0.67; p = 0.04). Collectively,
these model-driven analyses corroborate
our findings based on the tuning centroid
analyses and the linear separability indices
(Fig. 4): most V4 neurons were selective
for normalized curvature and thus consis-
tent with maintaining their preferences
for shape stimuli across appreciable trans-
formations of stimulus scale within the
RF.

0.4 06 0.8 1.0x
scale [fraction of RF]

Controls

The schematic of the scale test (see Fig.
1C) demonstrates that the position of the
convex projection varies as a function of
stimulus size. To be certain that the sys-
tematic changes in stimulus preference
across scale observed in a small subset of
V4 neurons could not be attributed to po-
sitional shifts of the preferred contour
segment within the RF, we incorporated a
control experiment, the position test, in
which we presented the same shapes at lo-
cations within the RF that matched the
positions induced by scaling (Fig. 1D).
Note that for concave shapes (see Fig. 1C,
right), the position of the concave inden-
tation does not change as a function of stimulus size; we therefore
only conducted the position test for convex shapes. The re-
sponses of two example neurons (the same neurons as in Fig.
3 A, B) to both the scale test and the position test are shown (Fig.
9A,B). For these two convex-preferring neurons, responses to
the scale test (left) showed clear horizontal shifts in the tuning
centroid across scale. However, their responses to the position
test (right) showed no systematic shifts in the tuning centroid
(triangles are superimposed and indistinguishable). Thus, these
neurons signaled their preferred contour segments in a position-
invariant manner.

To determine whether most V4 neurons encode object con-
tours in a position-dependent or position-invariant manner, we
examined the distribution of slopes derived from the tuning cen-
troids across position for all convex-preferring neurons recorded
(N = 39). Again, we found that most neurons had near-zero
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Figure 7.  Additional example responses to the scale test. A, B, Observed and predicted

responses for two neurons (left; symbols and lines); both neurons preferred the concave inden-
tation in our stimulus set. Observed and predicted tuning centroids for the same neurons (right,
black and red).

slopes (Fig. 9C; median = +0.10), indicating that they main-
tained their stimulus preferences as a function of position. Simi-
larly, most neurons had high separability indices, both for data at
the optimal rotation and at all rotations (see Fig. 9D,E). The
distribution of tuning centroid slopes was more centered near
zero for the position test compared with the scale test, and most
neurons (70%) showed perfect separability for position (separa-
bility index of 1), whereas a smaller subset (50%) showed perfect
separability for scale.

For neurons that contributed data to both the scale and posi-
tion tests (N = 39: N = 24, and N = 15 from each animal,
respectively), we observed no correlation between the linear re-
gression slopes for the two test conditions (Fig. 10; r = 0.07, p =
0.66); these measures were also uncorrelated when data from
each recording subject were analyzed separately. We also exam-
ined whether convex-preferring neurons that showed tuning
shifts in the scale test and that were classified as sensitive to abso-
lute curvature based on the partial correlation analyses (Fig. 8;
N = 5) also showed shifts in the position test. For these neurons,
there was no significant correlation between the slopes in the two
testing conditions (r = —0.21; p = 0.74); furthermore, there was
no lawful relationship between the sign of tuning centroid slope
in the two testing conditions. Thus, these data suggest that any
shifts in neuronal stimulus preferences in the scale test could not
be attributed to positional shifts of the preferred contour segment
within the RF.

Response gain modulation

Thus far, our analyses have focused exclusively on assessing
the invariance of tuning curves across stimulus transforma-
tions. Nevertheless, stimulus size may also influence neuronal
responses by providing an overall gain modulation. Consis-
tent with previous reports in IT cortex (Ito et al., 1995;
Tanaka, 1996; Zoccolan et al., 2007), we found that many V4
neurons of either type (ie, sensitive to absolute or normalized
curvature) showed response gain modulation across transfor-
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Figure 8.  Model comparisons. For each neuron, we plot the Z-transformed partial correla-
tion of the normalized curvature model (Zn, ordinate) against the Z-transformed partial corre-
lation of the absolute curvature model (Za, abscissa). Significance bounds (dashed lines) were
used to classify neurons as selective for normalized curvature (red), or selective for absolute
curvature (black); some neurons were unclassified (gray). Data from the two example neurons
in Figures 5 and 6 are highlighted.

mations of scale and position (Fig. 3, Fig. 9A). Most neurons
(71%; Fig. 11A, top) showed response enhancement with in-
creasing size, generally preferring stimuli at the largest scales;
a smaller subset (29%; Fig. 11A, bottom) showed response
suppression, preferring stimuli at the smallest scales. Across
the population of neurons recorded, the ratio of responses to
the largest versus smallest stimulus scales had a broad distri-
bution (Fig. 11B; median = 1.5, range = 24). These response
gain modulations demonstrate that V4 neurons carry infor-
mation about stimulus scale, even when their stimulus prefer-
ences are maintained across scale transformations.

Discussion

To examine the neural basis of invariant object representation in
primate visual cortex, we asked whether the selectivity of single
V4 neurons for the bounding contours of objects was maintained
across transformations of stimulus size within the RF. We found
that most neurons (~73%) maintained their preferences for
shape stimuli across substantial changes in size (>2-fold in linear
extent). For these neurons, normalized curvature, rather than
absolute curvature, provided the better account of shape selectiv-
ity. A smaller subset of neurons (~13%) faithfully signaled a
particular magnitude of contour curvature at all stimulus sizes;
these neurons showed systematic shifts in their preferences for
shape stimuli as a function of size that were well accounted for by
the absolute curvature model. For both types of neurons, shape
tuning was independent of stimulus position within the RF
(~30% of the RF). Collectively, these findings posit area V4 as a
suitable foundation for invariant object codes that support rec-
ognition behavior. This work also reveals, for the first time, the
coding scheme used by V4 neurons (and perhaps neurons down-
stream of V4) to represent objects in a size-invariant manner.

What stimulus features underlie size invariance?
Many studies have demonstrated that neuronal responses in the
ultimate stages of visual processing in IT cortex signal object
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Figure9. Position test controls. 4, B, Data from two example neurons (same asin Fig. 34, B).

Tuning curves for stimuli at different scales (left; replicated from Fig. 3), and tuning curves for
stimuli at different positions (right); stimulus positions were chosen so as to match the posi-
tional shifts induced by scaling. Both neurons showed shifts in the tuning centroid across scale,
but not across position (triangles). €, Population analysis of changes in neuronal stimulus pref-
erences across position. The distribution of slopes of the tuning centroids across position for all
convex-preferring neurons (N = 39). D, E, Distribution of the position separability index, de-
rived from responses at the optimal stimulus rotation and at all rotations (D and E, respectively).
In both cases, neurons showed high separability indices (median = 0.98 in D; 0.94 in E;
triangles).

identity across size transformations and can therefore support
invariant recognition (Schwartz et al., 1983; Desimone et al.,
1984; Gross et al., 1993; Sary et al., 1993; Ito et al., 1995; Logothe-
tis and Sheinberg, 1996; Tanaka, 1996; Hikosaka, 1999; Brincat
and Connor, 2004; Liu et al., 2009; Rust and DiCarlo, 2010). Size
invariance has also been demonstrated in V4 (Sawamura et al.,
2005; Rust and DiCarlo, 2010). Nevertheless, we still lack an ele-
mental understanding of the mechanisms that underlie invariant
object representations. Neurons in V4 and IT are selective for
many stimulus features (Gross et al., 1993; Tanaka, 1996; Connor
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Figure10.  Comparingsize and position invariance in neurons tested for both stimulus trans-
formations. For neurons that preferred the convex shapes in our stimulus set (V = 39), we
compared the linear regression slopes derived from responses in the scale test (abscissa and
marginal distribution, below) to the linear regression slopes derived from responses in the
position test (ordinate and marginal distribution, left). There was no correlation between the
linear regression slopes for the two test conditions.

etal.,2007), but we do not know which types of feature selectivity
support invariant representation because studies that measure
invariance do not also assess the basis of form selectivity in the
same neurons. Here, we examined invariance with respect to a
well documented type of form selectivity, asking whether V4 neu-
rons that signal local boundary conformation maintained their
preferences across size. Our measurements reveal that most V4
neurons signal normalized curvature, providing evidence that
they encode objects in a size-invariant manner. Given that V4 is
the dominant source of feedforward input to IT (Felleman and
Van Essen, 1991), it is possible that the same coding scheme may
also underlie size-invariant object representation in IT. Other
candidate coding schemes, eg, selectivity for the medial axis of
objects (Hung et al., 2012), may also contribute to invariant rep-
resentation in V4 and IT, and merit future examination.
Conclusions drawn from invariance studies can depend critically
on the choice of stimuli used, as well as the spatial and form selectiv-
ity of the neurons tested. For example, had we tested neurons with a
smaller set of stimuli that coarsely sampled contour curvature, we
may have classified fewer neurons as size-dependent. Alternatively,
had we not ensured that the preferred contour segment was within
the RF for all stimulus sizes, we might have classified many more
neurons as size-dependent; indeed, a mismatch between stimulus
and RF sizes may account for a previous report of limited position-
invariance in V4 compared with IT (Rust and DiCarlo, 2010). We
created stimuli that provided dense enough sampling along the con-
tour curvature dimension to reveal any systematic shifts in tuning
across scale transformations. We also tailored the stimuli presented
to each neuron based on measurements of its RF position and size.
Collectively, these strategies allowed us to identify invariant neurons
with confidence and to ask whether the tuning curves for different
stimulus sizes were scaled versions of each other, thus going beyond
assessments of the preservation of stimulus rank order (Li et al.,
2009). Our results demonstrate that most V4 neurons are as invari-
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Figure 11.  Response gain modulation as a function of size. A, Peak neuronal response at

each scale, normalized by the maximum response, is plotted as a function of stimulus size. Most
neurons (top) showed response enhancement; their responses were strongest for larger stimuli.
A smaller subset of neurons (bottom) showed response suppression; their responses were
strongest for smaller stimuli. B, Distribution of the ratio of responses to the largest and smallest
scales tested, for all neurons; the distribution was broad, suggesting that many neurons carried
information about stimulus size.

ant as IT neurons based on linear separability metrics (Brincat and
Connor, 2004; Rust and DiCarlo, 2010) suggesting that although
RFs increase in size from V4 to IT, invariance levels are maintained.

Advancing our understanding of object coding in V4

Previous work has demonstrated that the preferences of many V4
neurons for closed shapes can be explained in terms of selectivity
for boundary curvature at a specific location relative to object
center (Pasupathy and Connor, 2001). However, because these
previous findings were based on responses to stimuli at a single
scale, they cannot evaluate whether this representation is based
on a size-dependent or size-independent form of curvature. Our
results advance understanding of object representation in cortex
by demonstrating that V4 carries two parallel representations of
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boundary form: one size-invariant and one size-dependent, sig-
naled by neurons selective for normalized and absolute curva-
ture, respectively. For neurons selective for absolute curvature,
the changes in shape tuning across size are not random, but a
direct consequence of the geometric relationship between stim-
ulus size and absolute curvature. For both types of neurons,
stimulus size may modulate the gain of neuronal responses, sug-
gesting that they each encode size information (Fig. 11). Taking
into account these different coding schemes improved our ability
to model V4 responses: the average model fit correlation across
the dataset was 0.74 when neurons were fit with only the absolute
curvature model and 0.80 when they were fit with the better of the
two models (either absolute or normalized curvature).

The results of our control experiments also demonstrate that
the stimulus preferences of most V4 neurons were independent
of position in the RF. Although these findings extend previous
work that tested position-invariant form selectivity in V4 neu-
rons using a handful of stimuli (Gallant et al., 1993; Pasupathy
and Connor, 2001), they stand in contrast to recent work using
form stimuli defined by combinations of line elements, which
demonstrated position-dependent stimulus tuning in many V4
neurons (Nandy et al., 2013). This discrepancy is likely due to
differences in the spatiotemporal properties of the stimuli used.
In the current study, we sought to investigate position- and size-
invariant representations of isolated 2D objects. Our stimuli,
when viewed parafoveally as in our recording sessions, appear as
individual shapes separated by clear blank periods (stimulus du-
ration was 300 ms; interstimulus interval was 200 ms). In con-
trast, the study by Nandy et al. (2013) used small line-composite
shapes presented briefly and in rapid succession (stimulus dura-
tion was 16 ms; average interstimulus interval was 16 ms), and
assessed invariance by comparing tuning for the individual line-
composite shapes across position. Given the integration proper-
ties of the visual system, we speculate that their stimuli appear as
dynamically morphing textures. If the entire texture patch were
considered an object, the position-specific tuning curves thus
derived may reflect localized feature preferences in an object-
centered reference frame rather than the extent of position in-
variance. For example, a neuron selective for a circle may show a
weak preference for different line orientations at different points
along the circle, but this would not imply a lack of position in-
variance. Given the preponderance of size- and position-
invariant neurons we observed, our findings endorse a key, yet
underestimated, role for area V4 in invariant object representa-
tion and recognition, consistent with evidence that V4 lesions
impair invariant recognition behavior (Schiller, 1995). This
proposition is further strengthened by our recent demonstra-
tions that V4 selectivity for object contours is also resilient to
changes in stimulus color (Bushnell and Pasupathy, 2012) and to
occlusions (Bushnell et al., 2011).

From the standpoint of neural computation, if contour curvature
is computed piecewise by assaying contour orientation at regular
intervals along an object’s boundary, then neurons sensitive to nor-
malized curvature may assay orientation at distances that scale pro-
portionally with stimulus size, whereas neurons sensitive to absolute
curvature may assay orientation at points separated by a specific
linear distance, regardless of stimulus size. The former case is analo-
gous to computing curvature in a polar coordinate system (Ca-
vanagh, 1978). These different coding schemes may have different
functional relevance; size-invariant neurons may support the recog-
nition of objects regardless of scale, whereas size-dependent neurons
may inform motor plans involved in grasping objects. In line with
hierarchical models of object representation (Riesenhuber and Pog-
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gio, 1999), size-invariant neurons may be built up from the conver-
gence of size-dependent neurons. A variant of this model was
proposed to explain the emergence of neuronal selectivity for object
contours in V4 and to account for position-invariant selectivity
within the RF (Cadieu et al., 2007). The model achieves selectivity for
contour curvature by pooling the responses of many V1-like ori-
ented filters, and achieves position-invariance by repeating the pool-
ing process at different positions within the RF. However, the model
in its current form cannot account for the size-invariance of shape
tuning, motivating future computational work to account for our
main findings. Another implication of our work is that object size is
estimated before the encoding of bounding contours, and that this
estimation contributes to a representation based on normalized cur-
vature. Estimates of object size could be computed locally as the
distance between a given contour segment and object center, or
more globally as the average distance of all contour segments to
object center. In either case, the object must be segmented first. Ad-
ditional experiments are therefore needed to determine how objects
are segmented and how object center and size are estimated.

Invariant object coding is a distinctive property of high-level
vision and is critical for many perceptual and cognitive functions.
Theoretical work has long favored parameterizing objects by the
curvature of their bounding contours, highlighting the efficiency
and compactness of such a code (Attneave, 1954), its structural
stability and invariance with respect to scale, perspective, and
occlusion (Asada and Brady, 1984; Marimont, 1984; Besl and
Jain, 1985; Verri and Yuille, 1986). Object recognition theory has
also demonstrated that the shape of an object’s boundary, partic-
ularly local contour segments containing “diagnostic features”
shared across prototypes of a given object, can be useful for iden-
tifying objects across image transformations (Biederman, 1987).
Our results provide empirical evidence for the functional suit-
ability of contour-based mechanisms as a foundation for invari-
ant object representation in the primate cortex, and their
instantiation in single neurons in area V4.
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